Peng Cheng Laboratory
Abstract:Multimodal Large Language Models (MLLMs) have recently been applied to universal multimodal retrieval, where Chain-of-Thought (CoT) reasoning improves candidate reranking. However, existing approaches remain largely language-driven, relying on static visual encodings and lacking the ability to actively verify fine-grained visual evidence, which often leads to speculative reasoning in visually ambiguous cases. We propose V-Retrver, an evidence-driven retrieval framework that reformulates multimodal retrieval as an agentic reasoning process grounded in visual inspection. V-Retrver enables an MLLM to selectively acquire visual evidence during reasoning via external visual tools, performing a multimodal interleaved reasoning process that alternates between hypothesis generation and targeted visual verification.To train such an evidence-gathering retrieval agent, we adopt a curriculum-based learning strategy combining supervised reasoning activation, rejection-based refinement, and reinforcement learning with an evidence-aligned objective. Experiments across multiple multimodal retrieval benchmarks demonstrate consistent improvements in retrieval accuracy (with 23.0% improvements on average), perception-driven reasoning reliability, and generalization.
Abstract:The integration of reinforcement learning (RL) into large language models (LLMs) has opened new opportunities for recommender systems by eliciting reasoning and improving user preference modeling. However, RL-based LLM recommendation faces significant efficiency challenges, making full-data training costly. Existing data selection methods define sample value based on learnability or representativeness, yet their loss- or gradient-driven or dataset coverage-driven criteria often misalign with RL learning dynamics, resulting in suboptimal performance. To address this, we propose MiniRec, a data selection framework tailored for RL-based LLM recommendation. MiniRec evaluates sample learnability using key RL signals -- rewards -- pruning samples that are too easy (too high reward) or too difficult (consistently low reward). It assesses representativeness by aligning sample gradients with the approximated "ideal" global RL optimization trajectory, selecting samples that mainly drive model updates, and it also enforces diversity to reduce redundancy. Combined with a curriculum learning strategy from easy to hard samples, MiniRec significantly reduces training cost while largely preserving performance. Extensive experiments demonstrate MiniRec's effectiveness, highlighting the importance of reward-aligned, trajectory-informed data selection in RL-based LLM recommendation.
Abstract:Generative Artificial Intelligence (GenAI) is increasingly integrated into photo applications on personal devices, making editing photographs easier than ever while potentially influencing the memories they represent. This study explores how and why people use GenAI to edit personal photos and how this shapes their remembering experience. We conducted a two-phase qualitative study with 12 participants: a photo editing session using a GenAI tool guided by the Remembering Experience (RX) dimensions, followed by semi-structured interviews where participants reflected on the editing process and results. Findings show that participants prioritised felt memory over factual accuracy. For different photo elements, environments were modified easily, however, editing was deemed unacceptable if it touched upon a person's identity. Editing processes brought positive and negative impacts, and itself also became a remembering experience. We further discuss potential benefits and risks of GenAI editing for remembering purposes and propose design implications for responsible GenAI.
Abstract:Adaptive multimodal reasoning has emerged as a promising frontier in Vision-Language Models (VLMs), aiming to dynamically modulate between tool-augmented visual reasoning and text reasoning to enhance both effectiveness and efficiency. However, existing evaluations rely on static difficulty labels and simplistic metrics, which fail to capture the dynamic nature of difficulty relative to varying model capacities. Consequently, they obscure the distinction between adaptive mode selection and general performance while neglecting fine-grained process analyses. In this paper, we propose AdaptMMBench, a comprehensive benchmark for adaptive multimodal reasoning across five domains: real-world, OCR, GUI, knowledge, and math, encompassing both direct perception and complex reasoning tasks. AdaptMMBench utilizes a Matthews Correlation Coefficient (MCC) metric to evaluate the selection rationality of different reasoning modes, isolating this meta-cognition ability by dynamically identifying task difficulties based on models' capability boundaries. Moreover, AdaptMMBench facilitates multi-dimensional process evaluation across key step coverage, tool effectiveness, and computational efficiency. Our evaluation reveals that while adaptive mode selection scales with model capacity, it notably decouples from final accuracy. Conversely, key step coverage aligns with performance, though tool effectiveness remains highly inconsistent across model architectures.
Abstract:Sequential scaling is a prominent inference-time scaling paradigm, yet its performance improvements are typically modest and not well understood, largely due to the prevalence of heuristic, non-principled approaches that obscure clear optimality bounds. To address this, we propose a principled framework that models sequential scaling as a two-state Markov process. This approach reveals the underlying properties of sequential scaling and yields closed-form solutions for essential aspects, such as the specific conditions under which accuracy is improved and the theoretical upper, neutral, and lower performance bounds. Leveraging this formulation, we develop MarkovScale, a practical system that applies these optimality criteria to achieve a theoretically grounded balance between accuracy and efficiency. Comprehensive experiments across 3 backbone LLMs, 5 benchmarks, and over 20 configurations show that MarkovScale consistently outperforms state-of-the-art parallel and sequential scaling methods, representing a significant step toward optimal and resource-efficient inference in LLMs. The source code will be open upon acceptance at https://open-upon-acceptance.
Abstract:Trustworthy reasoning in Large Language Models (LLMs) is challenged by their propensity for hallucination. While augmenting LLMs with Knowledge Graphs (KGs) improves factual accuracy, existing KG-augmented methods fail to quantify epistemic uncertainty in both the retrieved evidence and LLMs' reasoning. To bridge this gap, we introduce DoublyCal, a framework built on a novel double-calibration principle. DoublyCal employs a lightweight proxy model to first generate KG evidence alongside a calibrated evidence confidence. This calibrated supporting evidence then guides a black-box LLM, yielding final predictions that are not only more accurate but also well-calibrated, with confidence scores traceable to the uncertainty of the supporting evidence. Experiments on knowledge-intensive benchmarks show that DoublyCal significantly improves both the accuracy and confidence calibration of black-box LLMs with low token cost.
Abstract:Reinforcement Learning with Verifiable Rewards (RLVR) is highly effective for enhancing LLM reasoning, yet recent evidence shows models like Qwen 2.5 achieve significant gains even with spurious or incorrect rewards. We investigate this phenomenon and identify a "Perplexity Paradox": spurious RLVR triggers a divergence where answer-token perplexity drops while prompt-side coherence degrades, suggesting the model is bypassing reasoning in favor of memorization. Using Path Patching, Logit Lens, JSD analysis, and Neural Differential Equations, we uncover a hidden Anchor-Adapter circuit that facilitates this shortcut. We localize a Functional Anchor in the middle layers (L18-20) that triggers the retrieval of memorized solutions, followed by Structural Adapters in later layers (L21+) that transform representations to accommodate the shortcut signal. Finally, we demonstrate that scaling specific MLP keys within this circuit allows for bidirectional causal steering-artificially amplifying or suppressing contamination-driven performance. Our results provide a mechanistic roadmap for identifying and mitigating data contamination in RLVR-tuned models. Code is available at https://github.com/idwts/How-RLVR-Activates-Memorization-Shortcuts.
Abstract:Memory plays a foundational role in augmenting the reasoning, adaptability, and contextual fidelity of modern Large Language Models and Multi-Modal LLMs. As these models transition from static predictors to interactive systems capable of continual learning and personalized inference, the incorporation of memory mechanisms has emerged as a central theme in their architectural and functional evolution. This survey presents a comprehensive and structured synthesis of memory in LLMs and MLLMs, organizing the literature into a cohesive taxonomy comprising implicit, explicit, and agentic memory paradigms. Specifically, the survey delineates three primary memory frameworks. Implicit memory refers to the knowledge embedded within the internal parameters of pre-trained transformers, encompassing their capacity for memorization, associative retrieval, and contextual reasoning. Recent work has explored methods to interpret, manipulate, and reconfigure this latent memory. Explicit memory involves external storage and retrieval components designed to augment model outputs with dynamic, queryable knowledge representations, such as textual corpora, dense vectors, and graph-based structures, thereby enabling scalable and updatable interaction with information sources. Agentic memory introduces persistent, temporally extended memory structures within autonomous agents, facilitating long-term planning, self-consistency, and collaborative behavior in multi-agent systems, with relevance to embodied and interactive AI. Extending beyond text, the survey examines the integration of memory within multi-modal settings, where coherence across vision, language, audio, and action modalities is essential. Key architectural advances, benchmark tasks, and open challenges are discussed, including issues related to memory capacity, alignment, factual consistency, and cross-system interoperability.
Abstract:Current context augmentation methods, such as retrieval-augmented generation, are essential for solving knowledge-intensive reasoning tasks.However, they typically adhere to a rigid, brute-force strategy that executes retrieval at every step. This indiscriminate approach not only incurs unnecessary computational costs but also degrades performance by saturating the context with irrelevant noise. To address these limitations, we introduce Agentic Context Evolution (ACE), a framework inspired by human metacognition that dynamically determines whether to seek new evidence or reason with existing knowledge. ACE employs a central orchestrator agent to make decisions strategically via majority voting.It aims to alternate between activating a retriever agent for external retrieval and a reasoner agent for internal analysis and refinement. By eliminating redundant retrieval steps, ACE maintains a concise and evolved context. Extensive experiments on challenging multi-hop QA benchmarks demonstrate that ACE significantly outperforms competitive baselines in accuracy while achieving efficient token consumption.Our work provides valuable insights into advancing context-evolved generation for complex, knowledge-intensive tasks.
Abstract:Video recognition models remain vulnerable to adversarial attacks, while existing diffusion-based purification methods suffer from inefficient sampling and curved trajectories. Directly regressing clean videos from adversarial inputs often fails to recover faithful content due to the subtle nature of perturbations; this necessitates physically shattering the adversarial structure. Therefore, we propose Flow Matching for Adversarial Video Purification FMVP. FMVP physically shatters global adversarial structures via a masking strategy and reconstructs clean video dynamics using Conditional Flow Matching (CFM) with an inpainting objective. To further decouple semantic content from adversarial noise, we design a Frequency-Gated Loss (FGL) that explicitly suppresses high-frequency adversarial residuals while preserving low-frequency fidelity. We design Attack-Aware and Generalist training paradigms to handle known and unknown threats, respectively. Extensive experiments on UCF-101 and HMDB-51 demonstrate that FMVP outperforms state-of-the-art methods (DiffPure, Defense Patterns (DP), Temporal Shuffling (TS) and FlowPure), achieving robust accuracy exceeding 87% against PGD and 89% against CW attacks. Furthermore, FMVP demonstrates superior robustness against adaptive attacks (DiffHammer) and functions as a zero-shot adversarial detector, attaining detection accuracies of 98% for PGD and 79% for highly imperceptible CW attacks.